Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 602(7896): 294-299, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1532071

RESUMEN

The B.1.1.7 variant (also known as Alpha) of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the UK in the summer of 2020. The prevalence of this variant increased rapidly owing to an increase in infection and/or transmission efficiency1. The Alpha variant contains 19 nonsynonymous mutations across its viral genome, including 8 substitutions or deletions in the spike protein that interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that of the 8 individual spike protein substitutions, only N501Y resulted in consistent fitness gains for replication in the upper airway in a hamster model as well as in primary human airway epithelial cells. The N501Y substitution recapitulated the enhanced viral transmission phenotype of the eight mutations in the Alpha spike protein, suggesting that it is a major determinant of the increased transmission of the Alpha variant. Mechanistically, the N501Y substitution increased the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil, South Africa and elsewhere2,3, our results indicate that N501Y substitution is an adaptive spike mutation of major concern.


Asunto(s)
Sustitución de Aminoácidos , COVID-19/transmisión , COVID-19/virología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Unión Competitiva , Bronquios/citología , Células Cultivadas , Cricetinae , Humanos , Masculino , Mesocricetus , Modelos Moleculares , Mutación , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Replicación Viral
2.
Antiviral Res ; 197: 105212, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1530602

RESUMEN

Drug repositioning has been used extensively since the beginning of the COVID-19 pandemic in an attempt to identify antiviral molecules for use in human therapeutics. Hydroxychloroquine and azithromycin have shown inhibitory activity against SARS-CoV-2 replication in different cell lines. Based on such in vitro data and despite the weakness of preclinical assessment, many clinical trials were set up using these molecules. In the present study, we show that hydroxychloroquine and azithromycin alone or combined does not block SARS-CoV-2 replication in human bronchial airway epithelia. When tested in a Syrian hamster model, hydroxychloroquine and azithromycin administrated alone or combined displayed no significant effect on viral replication, clinical course of the disease and lung impairments, even at high doses. Hydroxychloroquine quantification in lung tissues confirmed strong exposure to the drug, above in vitro inhibitory concentrations. Overall, this study does not support the use of hydroxychloroquine and azithromycin as antiviral drugs for the treatment of SARS-CoV-2 infections.


Asunto(s)
Antiinfecciosos/farmacología , Azitromicina/farmacología , Tratamiento Farmacológico de COVID-19 , Hidroxicloroquina/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/uso terapéutico , Azitromicina/administración & dosificación , Azitromicina/farmacocinética , Azitromicina/uso terapéutico , Bronquios/citología , Bronquios/virología , Chlorocebus aethiops , Cricetinae , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Humanos , Hidroxicloroquina/administración & dosificación , Hidroxicloroquina/uso terapéutico , Pulmón/patología , Mesocricetus , Persona de Mediana Edad , Plasma/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Vero
3.
Front Immunol ; 12: 689065, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1502324

RESUMEN

Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The US FDA has approved several therapeutics and vaccines worldwide through the emergency use authorization in response to the rapid spread of COVID-19. Nevertheless, the efficacies of these treatments are being challenged by viral escape mutations. There is an urgent need to develop effective treatments protecting against SARS-CoV-2 infection and to establish a stable effect-screening model to test potential drugs. Polyclonal antibodies (pAbs) have an intrinsic advantage in such developments because they can target rapidly mutating viral strains as a result of the complexity of their binding epitopes. In this study, we generated anti-receptor-binding domain (anti-RBD) pAbs from rabbit serum and tested their safety and efficacy in response to SARS-CoV-2 infection both in vivo and ex vivo. Primary human bronchial epithelial two-dimensional (2-D) organoids were cultured and differentiated to a mature morphology and subsequently employed for SARS-CoV-2 infection and drug screening. The pAbs protected the airway organoids from viral infection and tissue damage. Potential side effects were tested in mouse models for both inhalation and vein injection. The pAbs displayed effective viral neutralization effects without significant side effects. Thus, the use of animal immune serum-derived pAbs might be a potential therapy for protection against SARS-CoV-2 infection, with the strategy developed to produce these pAbs providing new insight into the treatment of respiratory tract infections, especially for infections with viruses undergoing rapid mutation.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Sitios de Unión , Bronquios/citología , COVID-19/genética , COVID-19/terapia , Células Epiteliales , Perfilación de la Expresión Génica , Humanos , Inmunización Pasiva , Ratones , Mutación , Pruebas de Neutralización , Organoides , Conejos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Sueroterapia para COVID-19
4.
mBio ; 12(6): e0275621, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1494976

RESUMEN

Outbreaks of emerging viral pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a major medical challenge. There is a pressing need for antivirals that can be rapidly deployed to curb infection and dissemination. We determined the efficacy of interferon lambda-1 (IFN-λ) as a broad-spectrum antiviral agent to inhibit SARS-CoV-2 infection and reduce pathology in a mouse model of disease. IFN-λ significantly limited SARS-CoV-2 production in primary human bronchial epithelial cells in culture. Pretreatment of human lung cells with IFN-λ completely blocked infectious virus production, and treatment with IFN-λ at the time of infection inhibited virus production more than 10-fold. To interrogate the protective effects of IFN-λ in response to SARS-CoV-2 infection, transgenic mice expressing the human angiotensin-converting enzyme 2 (ACE-2) were tested. One dose of IFN-λ administered intranasally was found to reduce animal morbidity and mortality. Our study with SARS-CoV-2 also revealed a sex differential in disease outcome. Male mice had higher mortality, reflecting the more severe symptoms and mortality found in male patients infected with SARS-CoV-2. The results indicate that IFN-λ potentially can treat early stages of SARS-CoV-2 infection and decrease pathology, and this murine model can be used to investigate the sex differential documented in COVID-19. IMPORTANCE The COVID-19 pandemic has claimed millions of lives worldwide. In this report, we used a preclinical mouse model to investigate the prophylactic and therapeutic value of intranasal IFN-λ for this acute respiratory disease. Specific vaccines have been responsible for curbing the transmission of SARS-CoV-2 in developed nations. However, vaccines require time to generate and keep pace with antigenic variants. There is a need for broad-spectrum prophylactic and therapeutic agents to combat new emerging viral pathogens. Our mouse model suggests IFN-λ has clinical utility, and it reflects the well-documented finding that male COVID-19 patients manifest more severe symptoms and mortality. Understanding this sex bias is critical for considering therapeutic approaches to COVID-19.


Asunto(s)
Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/terapia , Células Epiteliales/efectos de los fármacos , Interferones/inmunología , Interferones/farmacología , SARS-CoV-2/inmunología , Administración Intranasal , Enzima Convertidora de Angiotensina 2/genética , Animales , Antivirales/farmacología , Bronquios/citología , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/virología , Femenino , Células HEK293 , Humanos , Interferones/clasificación , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Transgénicos , Factores de Riesgo , SARS-CoV-2/efectos de los fármacos , Factores Sexuales
5.
J Infect Dis ; 224(8): 1357-1361, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1493824

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ) initiates entry into airway epithelia by binding its receptor, angiotensin-converting enzyme 2 (ACE2). METHODS: To explore whether interindividual variation in ACE2 abundance contributes to variability in coronavirus disease 2019 (COVID-19) outcomes, we measured ACE2 protein abundance in primary airway epithelial cultures derived from 58 human donor lungs. RESULTS: We found no evidence for sex- or age-dependent differences in ACE2 protein expression. Furthermore, we found that variations in ACE2 abundance had minimal effects on viral replication and induction of the interferon response in airway epithelia infected with SARS-CoV-2. CONCLUSIONS: Our results highlight the relative importance of additional host factors, beyond viral receptor expression, in determining COVID-19 lung disease outcomes.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/patología , Receptores de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/análisis , Variación Biológica Poblacional , Bronquios/citología , Bronquios/patología , Bronquios/virología , COVID-19/virología , Células Epiteliales , Femenino , Humanos , Masculino , Cultivo Primario de Células , Receptores de Coronavirus/análisis , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Factores Sexuales , Internalización del Virus
6.
Int Immunopharmacol ; 101(Pt B): 108201, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1440134

RESUMEN

One of the major clinical features of COVID-19 is a hyperinflammatory state, which is characterized by high expression of cytokines (such as IL-6 and TNF-α), chemokines (such as IL-8) and growth factors and is associated with severe forms of COVID-19. For this reason, the control of the "cytokine storm" represents a key issue in the management of COVID-19 patients. In this study we report evidence that the release of key proteins of the COVID-19 "cytokine storm" can be inhibited by mimicking the biological activity of microRNAs. The major focus of this report is on IL-8, whose expression can be modified by the employment of a molecule mimicking miR-93-5p, which is able to target the IL-8 RNA transcript and modulate its activity. The results obtained demonstrate that the production of IL-8 protein is enhanced in bronchial epithelial IB3-1 cells by treatment with the SARS-CoV-2 Spike protein and that IL-8 synthesis and extracellular release can be strongly reduced using an agomiR molecule mimicking miR-93-5p.


Asunto(s)
Células Epiteliales/inmunología , Interleucina-8/inmunología , MicroARNs , Glicoproteína de la Espiga del Coronavirus/inmunología , Bronquios/citología , Línea Celular , Humanos , Interleucina-8/genética
7.
Curr Issues Mol Biol ; 43(3): 1212-1225, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1438531

RESUMEN

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Antígeno CD47/metabolismo , COVID-19/epidemiología , COVID-19/metabolismo , Pandemias , Receptores Inmunológicos/metabolismo , SARS-CoV-2/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal/inmunología , Donantes de Sangre , Western Blotting/métodos , Bronquios/citología , COVID-19/patología , COVID-19/virología , Células CACO-2 , Células Epiteliales/metabolismo , Células Epiteliales/virología , Voluntarios Sanos , Humanos , Monocitos/metabolismo , Monocitos/virología , Reacción en Cadena de la Polimerasa/métodos , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
8.
Innate Immun ; 27(6): 423-436, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1409426

RESUMEN

Both innate immunity and acquired immunity are involved in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The induction of Abs that neutralize the virus has been described, and certain Abs against endemic coronaviruses may cross-react with SARS-CoV-2. Detailed mechanisms to protect against the pandemic of SARS-CoV-2 remain unresolved. We previously reported that IgG Fc-binding protein (Fcγbp), a unique, large molecular weight, and mucin-like secretory Fc receptor protein, secreted from goblet cells of human small and large intestine, mediates the transportation of serum IgG onto the mucosal surface. In this review, we show that mucous bronchial gland cells and some goblet cells are immunoreactive for Fcγbp. Fcγbp traps the cross-reactive (both neutralizing and non-neutralizing) IgG bound to the virus and can consequently eliminate the virus from the mucosal surface to decrease viral loads. Fcγbp can also suppress immune overreaction by interfering with Fc-binding by macrophages and competing with complement fixation. Fcγbp secreted from mucin-producing cells of the airway functions as an important anti-infection mucosal defense. The Fcγbp-mediated mechanism can be a key factor in explaining why SARS-CoV-2 is less infective/lethal in children, and may also be involved in the unique Ab response, recurrent infection, and effects of serum therapy and vaccination.


Asunto(s)
Anticuerpos Antivirales/inmunología , Bronquios/citología , COVID-19/inmunología , Moléculas de Adhesión Celular/inmunología , Anticuerpos Neutralizantes , Reacciones Cruzadas , Humanos , Inmunidad Innata , Inmunoglobulina G , Mucinas , SARS-CoV-2/inmunología
9.
Int J Med Sci ; 18(12): 2561-2569, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1389722

RESUMEN

SARS-CoV-2 infection poses a global challenge to human health. Upon viral infection, host cells initiate the innate antiviral response, which primarily involves type I interferons (I-IFNs), to enable rapid elimination of the invading virus. Previous studies revealed that SARS-CoV-2 infection limits the expression of I-IFNs in vitro and in vivo, but the underlying mechanism remains incompletely elucidated. In the present study, we performed data mining and longitudinal data analysis using SARS-CoV-2-infected normal human bronchial epithelial (NHBE) cells and ferrets, and the results confirmed the strong inhibitory effect of SARS-CoV-2 on the induction of I-IFNs. Moreover, we identified genes that are negatively correlated with IFNB1 expression in vitro and in vivo based on Pearson correlation analysis. We found that SARS-CoV-2 activates numerous intrinsic pathways, such as the circadian rhythm, phosphatidylinositol signaling system, peroxisome, and TNF signaling pathways, to inhibit I-IFNs. These intrinsic inhibitory pathways jointly facilitate the successful immune evasion of SARS-CoV-2. Our study elucidates the underlying mechanism by which SARS-CoV-2 evades the host innate antiviral response in vitro and in vivo, providing theoretical evidence for targeting these immune evasion-associated pathways to combat SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , Interacciones Huésped-Patógeno/inmunología , Interferón gamma/metabolismo , SARS-CoV-2/inmunología , Animales , Bronquios/citología , COVID-19/virología , Línea Celular , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Células Epiteliales , Hurones , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata , Interferón gamma/inmunología , RNA-Seq , Mucosa Respiratoria/citología , Transducción de Señal/genética , Transducción de Señal/inmunología
10.
Sci Rep ; 11(1): 6621, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1387468

RESUMEN

The human bronchial epithelium is the first line of defense against atmospheric particles, pollutants, and respiratory pathogens such as the novel SARS-CoV-2. The epithelial cells form a tight barrier and secrete proteins that are major components of the mucosal immune response. Functional in vitro models of the human lung are essential for screening the epithelial response and assessing the toxicity and barrier crossing of drugs, inhaled particles, and pollutants. However, there is a lack of models to investigate the effect of chronic exposure without resorting to animal testing. Here, we developed a 3D model of the human bronchial epithelium using Calu-3 cell line and demonstrated its viability and functionality for 21 days without subculturing. We investigated the effect of reduced Fetal Bovine Serum supplementation in the basal medium and defined the minimal supplementation needed to maintain a functional epithelium, so that the amount of exogenous serum proteins could be reduced during drug testing. The long-term evolution of the epithelial cell secretome was fully characterized by quantitative mass spectrometry in two preclinical models using Calu-3 or primary NHBE cells. 408 common secreted proteins were identified while significant differences in protein abundance were observed with time, suggesting that 7-10 days are necessary to establish a mature secretome in the Calu-3 model. The associated Reactome pathways highlight the role of the secreted proteins in the immune response of the bronchial epithelium. We suggest this preclinical 3D model can be used to evaluate the long-term toxicity of drugs or particles on the human bronchial epithelium, and subsequently to investigate their effect on the epithelial cell secretions.


Asunto(s)
Células Epiteliales/metabolismo , Proteoma/análisis , Proteómica/métodos , Enzima Convertidora de Angiotensina 2/metabolismo , Bronquios/citología , COVID-19/patología , COVID-19/virología , Técnicas de Cultivo de Célula , Línea Celular , Medios de Cultivo/química , Células Epiteliales/citología , Humanos , Espectrometría de Masas , Modelos Biológicos , Análisis de Componente Principal , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología
12.
Viruses ; 13(8)2021 08 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1355052

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), a global pandemic characterized by an exaggerated immune response and respiratory illness. Age (>60 years) is a significant risk factor for developing severe COVID-19. To better understand the host response of the aged airway epithelium to SARS-CoV-2 infection, we performed an in vitro study using primary human bronchial epithelial cells from donors >67 years of age differentiated on an air-liquid interface culture. We demonstrate that SARS-CoV-2 infection leads to early induction of a proinflammatory response and a delayed interferon response. In addition, we observed changes in the genes and pathways associated with cell death and senescence throughout infection. In summary, our study provides new and important insights into the temporal kinetics of the airway epithelial innate immune response to SARS-CoV-2 in older individuals.


Asunto(s)
Bronquios/inmunología , Bronquios/virología , Inmunidad Innata , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , SARS-CoV-2/inmunología , Anciano , Envejecimiento/inmunología , Bronquios/citología , Bronquios/metabolismo , COVID-19/inmunología , Muerte Celular/genética , Células Cultivadas , Senescencia Celular/genética , Citocinas/biosíntesis , Citocinas/genética , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Femenino , Humanos , Inflamación , Interferones/biosíntesis , Interferones/genética , Masculino , RNA-Seq , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , SARS-CoV-2/fisiología , Transducción de Señal/genética
13.
Sci Rep ; 11(1): 14961, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1322501

RESUMEN

Influenza and other respiratory viruses present a significant threat to public health, national security, and the world economy, and can lead to the emergence of global pandemics such as from COVID-19. A barrier to the development of effective therapeutics is the absence of a robust and predictive preclinical model, with most studies relying on a combination of in vitro screening with immortalized cell lines and low-throughput animal models. Here, we integrate human primary airway epithelial cells into a custom-engineered 96-device platform (PREDICT96-ALI) in which tissues are cultured in an array of microchannel-based culture chambers at an air-liquid interface, in a configuration compatible with high resolution in-situ imaging and real-time sensing. We apply this platform to influenza A virus and coronavirus infections, evaluating viral infection kinetics and antiviral agent dosing across multiple strains and donor populations of human primary cells. Human coronaviruses HCoV-NL63 and SARS-CoV-2 enter host cells via ACE2 and utilize the protease TMPRSS2 for spike protein priming, and we confirm their expression, demonstrate infection across a range of multiplicities of infection, and evaluate the efficacy of camostat mesylate, a known inhibitor of HCoV-NL63 infection. This new capability can be used to address a major gap in the rapid assessment of therapeutic efficacy of small molecules and antiviral agents against influenza and other respiratory viruses including coronaviruses.


Asunto(s)
Antivirales/farmacología , Infecciones por Coronavirus/virología , Gripe Humana/virología , Pruebas de Sensibilidad Microbiana/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Mucosa Respiratoria/citología , Bronquios/citología , Bronquios/virología , COVID-19/virología , Técnicas de Cultivo de Célula/instrumentación , Línea Celular , Coronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Mucosa Respiratoria/virología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/virología , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
14.
Viruses ; 13(7)2021 06 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1289021

RESUMEN

The current COVID-19 pandemic has highlighted the urgent need to develop effective therapeutic strategies. We evaluated the in vitro antiviral effect against SARS-CoV-2 of a hepatitis B virus (HBV) hexamer peptide, Poly6, which is capable of eliciting an antiviral effect against human immunodeficiency virus -1 (HIV-1), as a novel HIV-1 integrase inhibitor, and a strong anticancer immune response in an IFN-I-dependent manner, as a novel potential adjuvant in anticancer immunotherapy. Here, we report that Poly6 exerts an anti-SARS-CoV-2 effect, with an estimated 50% inhibitory concentration of 2.617 µM, in the human bronchial epithelial cell line, Calu-3 but not in Vero-E6 cells, which are deficient in type 1 interferon (IFN-I) signaling. We proved via assays based on mRNA profiles, inhibitors, or blocking antibodies that Poly6 can exert an anti-SARS-CoV-2 effect in an IFN-I-dependent manner. We also found that Poly6 inhibits IL-6 production enhanced by SARS-CoV-2 in infected Calu-3 cells at both the transcription and the translation levels, mediated via IL-10 induction in an IFN-I-dependent manner. These results indicate the feasibility of Poly6 as an IFN-I-inducing COVID-19 drug with potent antiviral and anti-inflammatory activities.


Asunto(s)
Antivirales/farmacología , Células Epiteliales/efectos de los fármacos , Virus de la Hepatitis B/química , Interferón Tipo I/inmunología , Péptidos/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Bronquios/citología , Bronquios/virología , Chlorocebus aethiops , Células Epiteliales/inmunología , Células Epiteliales/virología , Virus de la Hepatitis B/genética , Humanos , Pulmón/citología , Pulmón/virología , Péptidos/inmunología , SARS-CoV-2/inmunología , Células Vero
15.
Cells ; 10(6)2021 05 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1243956

RESUMEN

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.


Asunto(s)
Inmunidad Adaptativa/genética , Camelus/virología , Enfermedades Transmisibles Emergentes/inmunología , Infecciones por Coronavirus/inmunología , Inmunidad Innata/genética , Zoonosis/inmunología , Animales , Anticuerpos Antivirales , Bronquios/citología , Bronquios/fisiología , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Camelus/genética , Camelus/inmunología , Cilios/fisiología , Enfermedades Transmisibles Emergentes/genética , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Femenino , Predisposición Genética a la Enfermedad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mucosa Respiratoria/citología , Mucosa Respiratoria/fisiología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Emiratos Árabes Unidos , Replicación Viral/genética , Replicación Viral/inmunología , Zoonosis/genética , Zoonosis/transmisión , Zoonosis/virología
16.
mBio ; 12(3)2021 05 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1225698

RESUMEN

The spike (S) polypeptide of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consists of the S1 and S2 subunits and is processed by cellular proteases at the S1/S2 boundary that contains a furin cleavage site (FCS), 682RRAR↓S686 Various deletions surrounding the FCS have been identified in patients. When SARS-CoV-2 propagated in Vero cells, it acquired deletions surrounding the FCS. We studied the viral transcriptome in Vero cell-derived SARS-CoV-2-infected primary human airway epithelia (HAE) cultured at an air-liquid interface (ALI) with an emphasis on the viral genome stability of the FCS. While we found overall the viral transcriptome is similar to that generated from infected Vero cells, we identified a high percentage of mutated viral genome and transcripts in HAE-ALI. Two highly frequent deletions were found at the FCS region: a 12 amino acid deletion (678TNSPRRAR↓SVAS689) that contains the underlined FCS and a 5 amino acid deletion (675QTQTN679) that is two amino acids upstream of the FCS. Further studies on the dynamics of the FCS deletions in apically released virions from 11 infected HAE-ALI cultures of both healthy and lung disease donors revealed that the selective pressure for the FCS maintains the FCS stably in 9 HAE-ALI cultures but with 2 exceptions, in which the FCS deletions are retained at a high rate of >40% after infection of ≥13 days. Our study presents evidence for the role of unique properties of human airway epithelia in the dynamics of the FCS region during infection of human airways, which is likely donor dependent.IMPORTANCE Polarized human airway epithelia at an air-liquid interface (HAE-ALI) are an in vitro model that supports efficient infection of SARS-CoV-2. The spike (S) protein of SARS-CoV-2 contains a furin cleavage site (FCS) at the boundary of the S1 and S2 domains which distinguishes it from SARS-CoV. However, FCS deletion mutants have been identified in patients and in vitro cell cultures, and how the airway epithelial cells maintain the unique FCS remains unknown. We found that HAE-ALI cultures were capable of suppressing two prevalent FCS deletion mutants (Δ678TNSPRRAR↓SVAS689 and Δ675QTQTN679) that were selected during propagation in Vero cells. While such suppression was observed in 9 out of 11 of the tested HAE-ALI cultures derived from independent donors, 2 exceptions that retained a high rate of FCS deletions were also found. Our results present evidence of the donor-dependent properties of human airway epithelia in the evolution of the FCS during infection.


Asunto(s)
Bronquios/virología , Furina/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Transcriptoma , Animales , Bronquios/citología , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/virología , Humanos , RNA-Seq , Mucosa Respiratoria/citología , Eliminación de Secuencia , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
17.
Phytomedicine ; 87: 153583, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1213465

RESUMEN

BACKGROUND: A key clinical feature of COVID-19 is a deep inflammatory state known as "cytokine storm" and characterized by high expression of several cytokines, chemokines and growth factors, including IL-6 and IL-8. A direct consequence of this inflammatory state in the lungs is the Acute Respiratory Distress Syndrome (ARDS), frequently observed in severe COVID-19 patients. The "cytokine storm" is associated with severe forms of COVID-19 and poor prognosis for COVID-19 patients. Sulforaphane (SFN), one of the main components of Brassica oleraceae L. (Brassicaceae or Cruciferae), is known to possess anti-inflammatory effects in tissues from several organs, among which joints, kidneys and lungs. PURPOSE: The objective of the present study was to determine whether SFN is able to inhibit IL-6 and IL-8, two key molecules involved in the COVID-19 "cytokine storm". METHODS: The effects of SFN were studied in vitro on bronchial epithelial IB3-1 cells exposed to the SARS-CoV-2 Spike protein (S-protein). The anti-inflammatory activity of SFN on IL-6 and IL-8 expression has been evaluated by RT-qPCR and Bio-Plex analysis. RESULTS: In our study SFN inhibits, in cultured IB3-1 bronchial cells, the gene expression of IL-6 and IL-8 induced by the S-protein of SARS-CoV-2. This represents the proof-of-principle that SFN may modulate the release of some key proteins of the COVID-19 "cytokine storm". CONCLUSION: The control of the cytokine storm is one of the major issues in the management of COVID-19 patients. Our study suggests that SFN can be employed in protocols useful to control hyperinflammatory state associated with SARS-CoV-2 infection.


Asunto(s)
Bronquios/virología , Interleucina-6/genética , Interleucina-8/genética , Isotiocianatos/farmacología , Glicoproteína de la Espiga del Coronavirus/toxicidad , Sulfóxidos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Bronquios/citología , Bronquios/efectos de los fármacos , COVID-19/fisiopatología , Línea Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , SARS-CoV-2/patogenicidad , Regulación hacia Arriba/efectos de los fármacos
18.
mBio ; 12(2)2021 04 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1206005

RESUMEN

SARS-CoV-2 infection causing the COVID-19 pandemic calls for immediate interventions to avoid viral transmission, disease progression, and subsequent excessive inflammation and tissue destruction. Primary normal human bronchial epithelial cells are among the first targets of SARS-CoV-2 infection. Here, we show that ColdZyme medical device mouth spray efficiently protected against virus entry, excessive inflammation, and tissue damage. Applying ColdZyme to fully differentiated, polarized human epithelium cultured at an air-liquid interphase (ALI) completely blocked binding of SARS-CoV-2 and increased local complement activation mediated by the virus as well as productive infection of the tissue model. While SARS-CoV-2 infection resulted in exaggerated intracellular complement activation immediately following infection and a drop in transepithelial resistance, these parameters were bypassed by single pretreatment of the tissues with ColdZyme mouth spray. Crucially, our study highlights the importance of testing already evaluated and safe drugs such as ColdZyme mouth spray for maintaining epithelial integrity and hindering SARS-CoV-2 entry within standardized three-dimensional (3D) in vitro models mimicking the in vivo human airway epithelium.IMPORTANCE Although our understanding of COVID-19 continuously progresses, essential questions regarding prophylaxis and treatment remain open. A hallmark of severe SARS-CoV-2 infection is a hitherto-undescribed mechanism leading to excessive inflammation and tissue destruction associated with enhanced pathogenicity and mortality. To tackle the problem at the source, transfer of SARS-CoV-2, subsequent binding, infection, and inflammatory responses have to be avoided. In this study, we used fully differentiated, mucus-producing, and ciliated human airway epithelial cultures to test the efficacy of ColdZyme medical device mouth spray in terms of protection from SARS-CoV-2 infection. Importantly, we found that pretreatment of the in vitro airway cultures using ColdZyme mouth spray resulted in significantly shielding the epithelial integrity, hindering virus binding and infection, and blocking excessive intrinsic complement activation within the airway cultures. Our in vitro data suggest that ColdZyme mouth spray may have an impact in prevention of COVID-19.


Asunto(s)
Antivirales/farmacología , Mucosa Respiratoria/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Bronquios/citología , COVID-19/prevención & control , COVID-19/virología , Complemento C3/inmunología , Células Epiteliales , Humanos , Inmunidad Innata/efectos de los fármacos , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/inmunología , Mucosa Nasal/virología , Vaporizadores Orales , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , SARS-CoV-2/fisiología , Acoplamiento Viral/efectos de los fármacos
19.
Nature ; 592(7852): 122-127, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1104508

RESUMEN

During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Mutación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Replicación Viral/genética , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Bronquios/citología , Bronquios/virología , COVID-19/epidemiología , Línea Celular , Células Cultivadas , Cricetinae , Modelos Animales de Enfermedad , Células Epiteliales/virología , Femenino , Hurones/virología , Efecto Fundador , Técnicas de Sustitución del Gen , Aptitud Genética , Humanos , Masculino , Mesocricetus , Ratones , Mucosa Nasal/citología , Mucosa Nasal/virología , Unión Proteica , ARN Viral/análisis , Receptores de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad
20.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L246-L253, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1088311

RESUMEN

The COVID-19 pandemic is an ongoing threat to public health. Since the identification of COVID-19, the disease caused by SARS-CoV-2, no drugs have been developed to specifically target SARS-CoV-2. To develop effective and safe treatment options, a better understanding of cellular mechanisms underlying SARS-CoV-2 infection is required. To fill this knowledge gap, researchers require reliable experimental systems that express the host factor proteins necessary for the cellular entry of SARS-CoV-2. These proteins include the viral receptor, angiotensin-converting enzyme 2 (ACE2), and the proteases, transmembrane serine protease 2 (TMPRSS2) and furin. A number of studies have reported cell-type-specific expression of the genes encoding these molecules. However, less is known about the protein expression of these molecules. We assessed the suitability of primary human bronchial epithelial (HBE) cells maintained in an air-liquid interface (ALI) as an experimental system for studying SARS-CoV-2 infection in vitro. During cellular differentiation, we measured the expression of ACE2, TMPRSS2, and furin over progressive ALI days by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence staining. We also explored the effect of the fibrotic cytokine TGF-ß on the expression of these proteins in well-differentiated HBE cells. Like ACE2, TMPRSS2 and furin proteins are localized in differentiated ciliated cells, as confirmed by immunofluorescence staining. These data suggest that well-differentiated HBE cells maintained in ALI are a reliable in vitro system for investigating cellular mechanisms of SARS-CoV-2 infection. We further identified that the profibrotic mediators, TGF-ß1 and TGF-ß2, increase the expression of furin, which is a protease required for the cellular entry of SARS-CoV-2.


Asunto(s)
Bronquios/metabolismo , COVID-19/etiología , Furina/metabolismo , SARS-CoV-2 , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Bronquios/citología , Bronquios/efectos de los fármacos , Diferenciación Celular , Células Cultivadas , Susceptibilidad a Enfermedades , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Furina/genética , Expresión Génica/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Modelos Biológicos , Pandemias , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta2/farmacología , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA